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The classical problem of the free steady mixing layer which is formed as the result of the interaction between two parallel 
homogeneous flows which move with different velocities and come into contact in a certain section is considered. Subject to the 
additional condition that the first derivative of the solution in a class of self-similar functions is positive, a boundary-value problem 
is studied, for values of the self-similarity index m > 0, which describes the mixing of two viscous streams of the same fluid for 
m = 1 [1] and for m = 2 [2]. The method of investigation used [3-5] enables the third-order non-linear equation to be reduced 
to a first-order equation and enables the corresponding solutions ~(~) to be constructed in a parametric form as a function of 
the values of m. A knowledge of the behaviour of the velocity profile of the main stream can be used to investigate the flow 
stability. The results obtained form the basis of the subsequent construction of the solution of ~ ' s  problem [6] and the 
investigation of the uniqueness of the solutions obtained. © 1997 Elsevier Science Ltd. All rights reserved. 

It is well known [1, 7-9] that the flow in a mixing layer is described by the boundary-layer equation for 
the stream function with a zero pressure gradient. The latter equation has a class of self-similar solutions. 
The self-similar function ~(~) (~ is the serf-similar variable) satisfies a well-known non-linear differential 
equation, the coefficients of which contain the self-similarity index m [3-5]. 

A solution of the boundary-value problem which desen'bes the flow in the mixing layer is sought in 
the class of self-similar functions when m = 1 [1, 3-5]. The problem for m = 1 was subsequently extended 
[6] to the case of the mixing of two plane-parallel streams of fluid with different densities and coefficients 
of viscosity. Experiments [8] show that the mi,~ng layer at the interface between two different media 
often turns out to be more stable than a free mixing layer in a homogeneous fluid. 

Non-classical problems for miring layers with values of m e ( 1, 2] have also arisen [2, 10--12] in relation 
to the development of the theory of free interaction. The flow in the neighbourhood of the trailing edge 
of a plate when two viscous streams of the same fluid leave the edge at different velocities was investigated 
in [2]. The flow in the asymmetric Goldstein wake which arises is described by a boundary-value problem 
which must be sati,;fied by a serf-similar function ~(~) for m = 2. 

In all of the abov, z-mentioned papers the investigations were carried out by numerical and asymptotic 
methods. The question regarding the existence and uniqueness of a solution was left open. 

1. The flow of an incompressible fluid in mixing layers is described in the first approximation by a 
boundary-layer equation with a zero pressure gradient in the stream function 

3 ~ 0 2 ¥  0~ /32~_33¥  

ay Oyi)x i)x ~)y2 - O r 3  

Equation (1.1) has solutions in the class of self-similar functions [7-9] 

(1.1) 

v Lm+lJ x'+'*(;)' 4= yx '+ '  

A third-order non-linear differential equation 

m-l(ddp)2,~d2tb d30 
m - =  a ; '  

(1.2) 

is obtained for determining ~(0-  
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The boundary conditions for Eq. (1.2) are formulated as follows [3-5]: 

O=bl~m+ .... ~---)+**, b t>0,  m > 0  (1.3) 

• = O, ~ = 0 (1.4) 

O = b2(-~)n'+ .... ~ --..~ -,~,, b2<O (1.5) 

A boundary-value problem of the type of (1.2), (1.3)-(1.5) has been investigated in [1, 2] for m = 1 
and m = 2. In the physical problems which it describes, thex axis of an orthogonal system of coordinates 
(x, y) coincides with the zero streamline. The boundary-value problem (1.2), (1.3)-(1.5) is also of 
mathematical interest in its own right. Equation (1.2) is invariant under a displacement transformation. 
Its order is therefore reduced if we 

A boundary-value problem 

fd2f  (df'~2+~_~ m - I f  

I m-I 1 m-I 

f = m b ~  "1 + .... ~...~+~; f=m(_b2)m(_~),,, + .... ~--~-o,, 

(1.6) 

is obtained for determining f(~). 
Equation (1.6), in turn, is invariant under the stretching transformationf ~ ot2f, ~ ~ t~j, a ~ 0. This 

means the order of Eq. (1.6) is reduced by making the substitution 

f = ~2F(~), ~.flF / d~ = V (1.7) 

As a result, Eq. (1.2) reduces to the first-order equation [3-5] 

,~F 2 + 7 F W + 6 F  2 +W+ m+l  F 
dW _ m = P(F,W) (1.8) 
dr rV 

The derivatives of the functions f(~) and O(~) are connected with F and W by the relations 

dO = ~2F ,  d 2 0  
d~j .~._=~3F(W+2F), =_~4F(~.j.I. m+Im F) 

(1.9) 

d2f (~+2F)2+~+m+IF R(F,~) 
-~df = ~ ( V + 2 F ) , - ~ - = -  r m _ F 

The equations P = 0 and R = 0 determine the curves Pa and R 1 which pass through the point B and 
the curves P2 and R2 which pass through the pointA (Fig. 1). 

As a result of the subsequent group transformations, the problem of investigating the integral curves 
(ICs) of Eq. (1.2) was reduced to a problem involving the study of the pattern of the ICs of the first- 
order equation (1.8). In order to construct this pattern, it is necessary to know the nature of the singular 
points of Eq. (1.8) and to find the requirements which the ICs must satisfy in order that the boundary 
conditions are satisfied. 

Equation (1.8) has three singular pointsA(0, 0), B(0,-1), C(-(m + 1)/6m, 0) in the finite part of the 
plane and three singular points at infinity. These are conveniently denoted by E - E.; G - G., Q - Q. 
since each of these singular points on the equator of a Poincar6 unit hemisphere is split into two identical 
ones which lie symmetrically about the centre. Those which the curves enter or from which the curves 
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Fig. 1. 

leave are denoted by E, G, Q when ~I' < 0 and by E., G,, Q. when W > 0. The hemisphere is then 
projected onto the unit circle (Fig. 1) on which the singular points E - E,; G - G., Q - Q. and Q - Q. 
have the coordinates (+-1/~(5) • 2/~/(5)), (_+2/~/(3),-3/~/(13)) and (0, :1:1), respectively. The integral 
curves of Eq. (1.8) can only traverse the F = 0 axis by way of the singular points A, B and Q - Q,. 

We shall now study the behaviour of the ICs of Eq. (1.8) in the neighbourhood of the singular points. 
The singularpoimA(O, 0). The singular pointA is characterized by the fact that one of the characteristic 

numbers of Eq. (1.8) is equal to zero while the other is non-zero. We denote the domains in which d~P/dF 
< 0 by t) = {F > 0, P(F, ~F) < 0}, f~, = {F < O, • > O, P(F, W) < 0}. The IC which hit the point A 
either belong to i) or to f~* in a certain neighbourhood of this point [13-16]. If (F, u/) E t), then a 
single IC, which we denote by W~, hitsA. If an IC in domain t) enters a certain neighbourhood of point 
A, then it necessarily hits the point A when F --r + 0. We now consider the arc KL of radius p (0 < p 
< 1), the point K of which lies on the negative part of the W axis while L lies on the curve P2. The 
curvilinear sector ALK,  the boundary of which is the segment AK, the arc KL and a part of the curve 
P2-AL contain a single critical direction [17, 18]. 

Using the technique developed in [15-18], it can be shown that all the ICs which enter the sector 
A L K h i t  the point A when F ~ + 0, touching the line ~P = - [(m + 1)lm]F. We make the substitution 
tI' = [- (m + 1)/m + tolF. For the function tg(F), we obtain the equation 

[ ,m,,,m l( l )' F:: dto = ~ +  -2 )  F + ~  Fto+2to2F - to  (1.10) 
dF m ~ m 

It follows from the above that to(F) ~ 0 when F --4 + 0. In the neighbourhood of the point (0, 0), 
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Eq. (1.10) is Bendixon's equation [13, 16]. Hence a neighbourhood of the point (0, 0) exists, through 
which all the ICs of Eq. (18) from the sector ALK pass and reach (0, 0) on coming into contact with 
the line co = -[(m - 1)(m - 2)/m2~. This means that any IC which is contained in the sectorALK, has 
the form co = [(m - 1)(m - 2)/m IF + e01(F ) F when F ---> + 0. The function O~l(F ) --4 0, when F ~ + 
0, again satisfies Bendixon's equation in a certain neighbourhood of the point (0, 0). 

Consequently, for any IC which hits the point A at F -~ + 0 for a certain 50 > 0 (depending on the 
IC), the representation 

W - m +__...~1 F ( m -  l ) (m-  2) F2 +o)2(F), o)2(F) = O(F3 ) (1.11) 
m m 2 

F e [0, ~ol 

holds. 
We now distinguish one of the integral curves W = It(F) and investigate how the remaining integral 

curves of Eq. (1.8) differ from it when F -~ + 0. We will seek a solution of Eq. (1.8) in the form W = 
Ix + v. Substitution into Eq. (1.8) gives 

dv ( F d i t ] v _ v 2  Fv dv (1.12) E i t - ~ - = -  l + 7 r + 2 i t +  dF ) " ~  

The solution of the truncated equation (1.12), obtained by neglecting the non-linear terms, has the 
form 

[ m F-'] o)3(F)=I+O(F) v = Cv o = Ct% (F)F 1 exp - m + 1 ' (1.13) 

l =  
3m 2 + 4m - 5 

m(m + 1) 
, C = c o n s t ,  F e ( 0 , 5  0 ] 

All the functions of the form b-%0(F ) (the magnitude of q is arbitrary) which are encountered below 
are supplemented by zero with respect to their continuity at zero. We put v = C (F)v0 and, for deter- 
mining C(F), we obtain the integral equation 

C(F) = A(C; D) 

A(C;D) = - i  F-~it -1 d(Fv°) C2 o dE l+B_tvocdF+D, D = const (1.14) 

We now consider a space of continuous functions in the segment [0, 6] with a metric II ~' II = sup I tO I, 
F e [0, 6] and denote the bounded and closed set of functions which satisfy the conditions 

II~p(F) - Oil ~< M, cp ~ C[0,~], m = const 

by L. 
We shall show that the operatorA (9); D) contracts L. We choose 6 > 0 such that relations (1.11), 

(1.13) and 

5 F-ll "t-ld °)'dF<" Mq?(l-q2)2 0 < q  2 < -  
o (IDl+M) 2 ' 3 

I~-'~o(IDl+ M ) ~  q! < 1 

are simultaneously satisfied. 
We then have 

tp E L --~ a(tp;O) e CtO,~i], Ila(q~,O)- l~l<~ M 

~0,,cp2 ~ L ~IIA(~O,;D}- A(~02;D}II <-- 0211~,- 0211, 02 < 1 
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It follows from this that Eq. (1.14) has a unique solution C*(F) ~ L, F e [0, 5]. Consequently, any 
solution of Eq. (1.8) in the domain f~ when F ---> + 0 can be represented in the form 

P X-lt-t d(Zvo) C "2 
tp = Ix(F) + Dv o -v o J - |  * 

o d'¢ 1+ B voC 
dF = B( F) + Do o + o(I) o) (1.15) 

It will become d e a r  from what follows that it is best to take the IC ~F~, which will be determined 
below, to serve as LI' = Ix(F). 

The asymptotic behaviour of  the solutions of  Eq. (1.8) at ~ ~ + **, which correspond to (1.5), will 
be  as follows [3-5]: 

~ = bl,(~+la) m (m-l)(m-2)O[(~+lA)-(m+2)]+ 
m + 1 (1.16) 

+D2(~i+lA)~lexp[-m~l(~+lA)m+l ] , .  ~1 =-- 3m2 +Sm-4m+l ; /92, ~ =const  

The singular point B. The singular point B is a saddle point. For any m > 0, a single integral curve 
passes through it which, at F ---> 0, is described by the expansion [3-51 

W = - I + ~ ,  b~F', b l=  6m-1 I [  k=, 2m ' b2 = 262 + 7b, +6]  (1.17) 

1 [ k + 2  k ] 
= zT L-T._z2 bk :,k_.+, + 

We will denote the part of  it when F > 0 by ~F1 and the part of  it when F ~< 0 by ~P]. The solutions 
of  Eq. (1.6) which correspond to expansion (1.17) can be represented in the form 

f = -c(~ - c)- ~m(~- c) 2 + 0[(~ - c) 3 ], ~ ~ c # 0 (1.18) 

Solutions which are described by expansion (1.18) w h e n f  > 0 correspond to the curve W1 and, when 
f < 0, to the curve ,Lp~. The solutions of  Eq. (1.2) which correspond to ~P1 and ~F~ at F ---> 0 behave in 
the following manner  at c~ ---> +** 

• = c - sign(cf) exp[-c(~ + I s )]+ .... IB = const (1.19) 

Henceforth, ~ with a subscript denotes a certain finite value of  ~, and C with a subscript denotes a 
constant. 

The singular point E - E,. In order to investigate a singular point at infinity, we make the change of 
variables 

2 F -  m - 1  1 O - 1  
m t t 

in Eq. (1.8). 
As a result, we obtain the equation 

t ( l _ a ) ( l + m - l t ) d o  0 _ 2 0 2  5 m - 3  
m "~" = 2" - 2 - - - ~  at - (1.20) 

(2m - l)(m - l) t 2 _ m - 1 tO 2 
m 2 m 

Its solution, when 0 ~< t < r (Ce), can be represented in the form of a convergent series (r is the radius 
of  convergence) [3-5, 19] 
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(I = ~,  d~t t/2 = CEt~JI(t;CE)+ J2(t;CE) 
k=! 

Jl(t ,r E)= Jl( t ; . r  E), J2(t;r E)= J2(t;-r E), O<<~ t < r(C E) 
(1.21) 

The solution when t ---> 0 is constructed in a similar manner. It follows from what has been said that 
the point E - E .  is a node. According to (1.21), the solution of Eq. (1.8) in the neighbourhood of the 
point E behave in the following manner at F ~ + .o 

= - 2 F +  m - 1 + C e J 2  F _  m - 1 + .. . .  F --) +00 (1.22) 
m ~ m 

We will now investigate how F depends on g in the neighbourhood of the point E. A new function 
x is introduced by putting t = x ~. To determine x - x(~) we obtain an equation from (1.7), the general 
integral of which will be 

r; ] • (.~,~;a,C~):a~-iexPL~o~~))a :0,  aieO 

z(~; C~)-- C~I~(C;C~)+I~(~2;C~) (1.23) 

Since z(0; CE) = z (-0; --C~), we have 

O ( ~ , - x ; - a , - c a )  = -~,(~, x;a, Ce) 

We will denote the ICs which, when F --. + .o, are described by expansions (1.22) with C e  = a > 0 
by ~F = ~F(F; ct) and with Ca = 13 < 0 by W = W(F; 13). The functions z (x; Ca) corresponding to them 
are denoted by z (x; a)  and z (x; 6). 

If we find ourselves on the curve W = ~F(F; 0t) anda  = a2 > 0 then Eq. (1.23) serves for determining 
the dependence of x on ~, and x2 = ~x(~; a2, ct), I ~ I < r~(a2, ¢t) wil l  be its solution, where K is a holo- 
morphic function and ic(0; a2, ¢t) = a2. 

Suppose we find ourselves on the curve W = ~F(F; 13) and a = al < 0. We find how x depends on 
as the solution of Eq. (1.23) and we denote this solution by xl = ~×(~; ax, 13), I ~ I < rE(al,  1~), x(0;al, 
~) = al. 

It follows from the continuity off(~) and its derivative at the point ~ that a~ = a~ and a2 = ~al. Since 
¢~ and [3 must have different signs, the solution of this system will be 13 = -o., al = -a2. 

On putting 13 = --~, al = - a2 = --% < 0, we obtain from relation (1.23) that xl(~; --a0, --~) = -x2(~, 
a0, ct), I gl < re(ao, o0. 

Using (1.7), we therefore have 

=1 m -  ~2+ fl =lrm-l~2+x-2(~;-ao,-OO],21 m f2 ~ [  m 1 

+x-2(~;a0,00], fl =-f2, 0~<l~l<rE(a0,00 

(1.24) 

Consequently, each doubly continuously differentiable solutionf(~) in the neighbourhood of the point 
(~ = 0, f(0) ~ 0) is mapped, in the neighbourhood of point E, onto the two ICs W = ~F(F; --~), W = 
~F(F; c0, the combination of which we shall also call an IC. Conversely, if the ICs ~F = W(F; --~) and 

= ~F(F; a)  are extended, the solutions corresponding to them in the neighbourhood of the points (g 
= 0,f(0) ~ 0) in the class of doubly continuously differentiable functions will be described by expansions 
(1.24). The solutions of Eq. (1.2) corresponding to them in the (4, ~b) plane have the form 

-3 
(1.25) 

Conversely, each solution (]9(4) of Eq. (1.2) in the neighbourhood of the point ~ = ~ ,  (]D(~) = 0 
with d ~ / d ~  > 0 is mapped into the corresponding neighbourhood of point E by the two branches of 
the ICs of Eq. (1.8) with CE = (z > 0 and Ce = 13 = - o~ < 0. 
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If ~ ¢ - a and the first derivative of ~'(~) is continuous, on passing through point E in the manner 
described above, the second derivative ~"(~) will have a discontinuity at the point ~ = ~ .  

On passing through point E in the manner described above, the solutions of Eq. (1.2) in the 
neighbourhood of points of the ~ axis behave as follows: 

ao 2 at~ 3 )2 + m - 1 --4,, 
~ = - - -~ - (~ -~e , )+ -~ - -Ce . (~ ,~e .  24ma0 t~ -  ~e,.)3+... (1.26) 

We will denote the IC which departs from E when F ---> + -0 and is described by (1.22) with Ce = 0 by 
WE. Each of the solutions of Eq. (1.2) corresponding to it is described by expansion (1.25) with a = 0. 

The IC We, is defined in a similar manner. Curves which are described by (1.26) with CE. = 0 
correspond to it in the (~, ~ )  plane. 

The singular point Q - Q.. The singular point Q - Q, is a node. In the neighbourhood of this point, 
the ICs behave as follows: 

cQ 
W = - - - l +  .... F--->O, CQ~O 

F 

In the (~, @) plane, the point Q - Q. corresponds to points of a local extremum in the solutions of Eq. 
(1.2). In the neighbourhood of the extremal point ~ = ~Q, the solution can be represented in the form 

+cQ c3~ ~ ce c41~ ~ ~3+ 
- Qj . . .  O = c  2 

It is clear from this expansion that, on passing through the point Q - Q., the constant CQ must be 
preserved. Suppose, for example, that an IC hits the point Q with CQ < 0 at F ---> +0. In order to obtain 
the solution ~(~) in the neighbourhood of the point ~ = ~Q, it is necessary to leave the point Q. along 
the IC with CQ. = CQ at F ---> -4). 

The singular point G - G.. The singular point G - G. is a saddle point. A unique IC 

W c = - 3 F + m - 2 + O ( F - l ) ,  F--->+**, m > 0  
2 5m 

hits this point at F --> +00. 
Integral curves, which are identically not equal to zero and touch the ~ axis, correspond to it in the 

(~ @) plane [11, I2]. 
The singular point C. When m > m. = (-17 + 12~/6)/23 > 1/2, the singular point C is a focus and, 

when 0 < m ~< m,, it is a node. As the IC W = W(F) approaches the singular point C, the ICs corres- 
ponding to it in the (~, @) plane at ~ ---> ~ behave as follows: 

~ =  6m (~_~c)-i+o[(~_~c)_l] 
m + l  

2. Hence, if an IC W = W(F), at F ---> + 0, hits pointA at ~ > 0, then condition (1.3) is satisfied. If 
it hits point A when ~ < 0, then condition (1.5) is satisfied. The transfer at the point E - E .  from the 
IC W = W(F; CE) with CE = a > 0 to the IC W = W(F; - a) means that the ICs of Eq. (1.2) corresponding 
to it intersect the ~ axis. 

If the point E --E. is reached along We or We., then @(~) and ~"(~) simultaneously vanish. The 
passage of the singular point Q - Q, in the manner described above shows that the solutions of Eq. 
(1.2) corresponding to the IC W = W(F) have a local extremum. As the IC W = W(F) approaches the 
point C, the ICs of Eq. (1.2) which correspond to it behave as Q[(~ - ~)-1. 

It has been proved [3-5] that, when m > 1/2, the curve W1 hits the point E with a definite value CE 
= 13" < 0. We now continue this curve with the curve W2 with CE = -[P = a* > 0. The curve W2 hits 
the point A at F -~ + 0. It has also been shown that, when m > 1/2 and at F ---> + 0, Wc and WE also 
reach the pointA (Fig. 1). 

We now consider the boundary condition 

ddPl d;..--~O, ;.-o-** (2.1) 

Boundary-value problem (1.2)-(1.4), (2.1) gives the solution of the Chapman problem [20, 21] when 
m = 1, and, when m = 5/3, 2, it describes the flow in a mixing layer which occurs in the theory of local 
separation [10-12]. 
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The solution of boundary-value problem (1.2)--(1.4), (2.1) is mapped onto the curve K = W1 t_J tI~ 2 
[3, 5]. The curve Kwill play a cardinal part in the subsequent investigation. We will therefore consider 
the solution of problem (1.2)-(1.4), (2.1) in greater detail and find its solution in parametric form, 
assuming the behaviour of curve K to be known. In the (~, f )  plane, the parametrically defined ICs 

_ cl c2F 
~ i : ~ -  F ~ e x p A I '  f l=  F + l e x p ( 2 A l )  

At(F)= I + - -  0~< F < + . .  
0 2 ( F + l )  ' 

C2 
"P2:~ = ' ~ e x p ( - A 2 ) ,  f2 = c2 exp(-2A2) 

iI +l] A2(F)= LW2 2F dF, 0 - < F < + o o  

correspond to the curves ~F 1 and ~F2. 
We now put cl < 0 and c2 = --cl exp[Al(O*)]. Then the function which is the inverse of the 

function 

; = I  , 
o 

f ( ~ ) =  t c  2 exp[2Al(oo))], ~ = 0  

e ( o , )  

gives the solution of problem (1.2)-(1.4), (2.1) when m > 1/2. The values of the constants cl and b 1 are 
related to one another 

c I = - m  m~l blm-+l exp -A I (oo) + dF + A 2 (1) = -k  I (m)bl m+l 
(m 1)F' 

(2.2) 

It follows from what has been said that a solution of problem (1.2)--(1.4), (2.1) exists when m > 1/2 
and is unique, as is clear from condition (1.5) of problem (1.2)--(1.5) when m > 1. In order to distinguish 
the unique solution when m > 1/2, one can require that • ---> c + O[exp ( -  c ~)], c < 0 when ~ ---> --~ 
instead of condition (2.1). However, the constant c is related to the constant bl by relation (2.2) and 
cannot be assigned arbitrarily. For each m, the coefficient kl in (2.2) is calculated once and for all. Since 
the singular point B is a saddle point, the conditions ~ ---> c < 0 and ddP/d~ > 0, ~ e (--~, +0-) are 
sufficient to distinguish the unique solution when m > 1/2 [4, 22]. If c is taken as being equal to Cl, we 
obtain the solution of problem (1.2)-(1.4), (2.1). In order not to introduce a constant into the boundary 
conditions which has to be determined when solving the problem, the boundary condition ~ ---> --** can 
be formulated as follows: (_~)1+k2 ~,(~) __> 0, ~ ---> - ~  for any k. 

All the curves situated between WE and W1 in the neighbourhood of point A hit point E at F ~ +~ ,  
and the curves continued in the manner  described above at F---> + 0 return to pointA [4, 5]. The curves 
situated in the neighbourhood of point A between tF 2 and u/G hit point E at F -~ +,~, and the continued 
curves, when F ---> + 0, then hit the point Q. 

To prove this, an arc TD, linking the curves P1 and utl, is drawn in a certain small neighbourhood of the point 
B. We take the IC 01 = 01(F) which leaves point E and, in a certain neighbourhood of this point, is described by 
expansion (1.21) or (1.22) when CE = 13 > [l*. We now take a certain point (Fo, 01.) on the curve 01 = 01(F, [3) in 
the neighbourhood of the point E and draw the straight line F = F.. This line intersects the curves 011 and P1 at 
the points N and M. We now consider the domain ~1, the boundary of which is formed by the arc TD, a part of 
the curve P1-TM, a part of the curve 011-DN and a segment of the straight line F = F* - MN. The inclination of 
the IC is negative in the domain ~l- 

When the IC is continued, it can only intersect the boundary of the domain f~l at the points TD or TM. If the 
IC intersects TD, then, subject to the condition that the radius of the arc TD is small, it leaves the sector BTD 
across its side BT [15-17]. Hence, when the IC 01 = 01(F) is continued, it necessarily intersects the curve P1 at a 
certain point (F0, 010). We shall take the curve 
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(c, 2m-+l F , F¢ (0 ,F  o] ~ ' r = -  F-2-3F2 "3 m 

The constant Cv is chosen such that the curve ujv passes through the point (F0, ~0). At F ---) + 0 the curve ~ 
hits the point Q. It can be shown that the inequalities 

0<~FF (F'W~') < a~v dF 

hold at the points of the curve Wr 
It follows from these inequalities that any IC which departs from a point E below the curve W1 reaches the point 

Q at F ~ +0. When continued through the point Q - Q., it enters a domain in which F < 0. 

The integral curves which depart from pointA above WG initially intersect the axis F. They then arrive 
at point Q. when F ---> + 0 and then, when continued, hit the point C. 

3. We now consider problem (1.2)-(1.5) when m > 1/2 [4, 5] and the additional condition dO/d~ > 
0, ~ z (--o., +.0). We shall denote a curve which departs from point A between the curves WE and W2 
by ~F b and a curve between W E and the ~F axis by WH and require that the curves Wb and WH should be 
a continuation of one another in the manner described above through the point E. In the (~, J0 plane, 
the ICs ~Fb will correspond to the ICs 

C b 2 
= "~ 'exp[ -Ab(F) ] ,  fb = % exp[-2Ab(F)], cb = const 

These formulae will also describe ICs in the ({,f) plane which correspond to ~H if we substitute ~H 
and CH (CH = const) into them instead of ~b and Cb. 

We put Cb = -OH. It Can then be shown that the function 

o) 

f (~)  = ~c~,, ~ = 0  

[fb(~), ~ ~(0,+°°) 

is doubly continuously differentiable and is a solution of Eq. (1.6). Here the constant Cb > 0. Then, at 
I ~ I ~ o o  (F ~ + 0), we have 

ra+l 

: I I  l 1 + m ] d F -  1_.~+ 1 dF ~ m +... 
f b =  c b e x p -  ( m + l ) F J  tL~b 2F  

m+l { ( m ,1 m 

On comparing the asymptotic forms obtained with boundary conditions (1.6), we obtain 

(3.1) 

e x p - ( m + l )  S 1 1 dF c b>O b2 = -h i  
0 "t'H ~l~b 

(3.2) 

When Cb' < 0, the function 

[fb(~), ~ ~ (--oo,0); 
;--0; 

[f~(~), ~ ~ (0,+oo). 
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will also be a solution of  Eq. (1.6). 
If Cb < O, then 

b 2 = -b  I exp (m + 1) . ~Pb' 

Since ~ - ~ 1  ~ 0, then, in the case of (3.2), we have (-02) ~ b I and, in the case of (3.3), (-02) ~ ba. 
The function which is inverse to 

0 f(~) 

is the solution of problem (1.2)-(1.5). 
We now consider the integral 

The functions I1([3), I2(-~),[~ ¢ ([3", 0] are monotonically decreasing and continuous functions. When 
13 = 0, they are equal to zero. We will now show that the function I1(~) is unbounded. The straight line 
¥ = -1 is drawn. Suppose that the solution }t' = ~t'c(F ) has the asymptotic representation (1.11) in the 
interval (0, Fa) and that the straight line F = Fa first intersects ~E and then ~ = -1. 

We denote the points of intersection of the straight line F = Fa with ~Fe and the straight line ~ = 
-1 by Lt and Lz respectively, and the domain bounded by the curve ~E and the segmentsAB, BL z  and 
L i L  2 by ~2. We now consider the differential equation 

dug u/ 2 + 7 FtP r + 6 F 2 + u/ + m + l F 

= m = N ( F , V )  (3.4) 
d F Fo/ ~ 

in this domain. 
Its solution is ~I' = ~Fr(F). The IC of Eq. (3.4) which departs from any point (Fo, -1), Fo ~ (0, Fs) is 

situated between ~ e  and the IC of Eq. (1.8) since 

P( F,~F) 

FtF 
- -  > N ( F ,  ~F), (F,  ~F) e [2 2 

Equation (3.4) is linear. Its general solution is 

~ =  ~Fe+ De e x p [ - !  I + 7 F d F  ] j, O =const 

The /C  

= ~ u  7[I+~r(Fo)]Fo -I~° exp .(m+l)F ° F I~° exp oa2(F)dF exp - (m~' l )F  

passes through the point (F0, -1). 
We now evaluate the integral 12 

+7 4.- FS m + l  F o 
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Here, Vt / is  the IC of Eq. (1.8) which passes through the point (F6, -1). When F --+ F0, the quantity 
B --+ B.. Consequently, 

lim I=** 

Since the function I2(-~) (1~ ~ (13", 0]) is bounded. This means that (--bl/b2) e (0, **) and the values of 
the constants bl and b2 can be chosen arbitrarily. 

Hence, if the ratio (.-bl/b2) is specified, then, from (3.2) and (3.3) we obtain the completely defined 
values CE = ~ < 0 and CE = a0 = --~ > 0 and thereby uniquely distinguish the pair of ICs Wt/and 
Wb. The family of solutions of boundary-value problem (1.6), for which the ratio (--bl/b2) has one and 
the same value, corresponds to this pair in the class of doubly continuously differentiable functions. 
Knowing bl and be, we determine Cb and CH (at Cg > 0 from (3.1)) and obtain the unique solution of 
problem (1.6). When ~ = 0, we have 

af. = 42C.~o, afb = 42cbao = (.,~c.~) 

Consequently, boundary-value problem (1.6) can be replaced by the Canchy problem for Eq. (I,6) 
with the initial conditions 

df 
f (O)=g , (g ,  #0) ,  ~-(0)=~CbCX 0, Ct o e[0,Ct*) 

After it has been solved, the solution of boundary-value problem (1.2)-(1.5) is determined as the 
function which is the inverse of 

o 

; = I a~ (3.5) 
0 f(~) 

Its asymptotic behaviour as I ~ I -o ** has the form 

---- ± m____!1 a~ 
o f(~) mbm ~ m 

° I , 
~,=b:(-;+t~2')m+ .... ; - ~ - ~ ;  t~ ~' =-_.I f ~ )  

m(_b2 )- (_~ )-~- J 
The behaviour of the derivatives of the solution of (3.5) is determined using formulae (1.9). When 

2 2 2 2 m = 1, we have dO~dE > 0 and also d tl,/d~ > 0 if cb > 0 and d O/dE < 0 if Cb < O. 
Without the a&litional condition dO/d~ > 0, the solution of boundary-value problem (1.2)-(1.5) ceases 

to be unique when m > 1. 
This research was carried out with the financial support from the Russian Foundation for Basic 

Research (93-013-17363). 
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